Kafka
简介
Kafka是由LinkedIn开发的一个分布式的消息系统,使用Scala编写,它以可水平扩展和高吞吐率而被广泛使用。
消息队列
消息队列的两种模式:
-
点对点模式:一对一,消费者主动拉取数据,消息收到后消息清除。
消息生产者生产消息发送到Queue中,然后消息消费者从Queue中取出并且消费消息。消息被消费以后,Queue中不再有存储,所以消息消费者不可能消费到已经被消费的消息。Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。
-
发布-订阅模式:一对多,消费者消费数据之后不会清除消息。
消息生产者(发布)将消息发布到topic中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到topic的消息会被所有订阅者消费。
Kafka是一种分布式的,基于发布/订阅的消息系统。
主要设计目标如下:
1、以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间复杂度的访问性能。
2、高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条以上消息的传输。
3、支持Kafka Server间的消息分区,及分布式消费,同时保证每个Partition内的消息顺序传输。
4、同时支持离线数据处理和实时数据处理。
5、Scale out:支持在线水平扩展。
应用场景:异步、削峰、解耦。
基本概念
- Producer:消息生产者,就是向kafka broker发消息的客户端。
- Consumer:消息消费者,是消息的使用方,负责消费Kafka服务器上的消息。
- Consumer Group(CG):消费者组,用于归组同类消费者。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
- Topic:主题,由用户定义并配置在Kafka服务器,用于建立Producer和Consumer之间的订阅关系。生产者发送消息到指定的Topic下,消息者从这个Topic下消费消息。
- Partition:消息分区,一个topic可以分为多个 partition,每个partition是一个有序的队列。partition中的每条消息都会被分配一个有序的id(offset)。
- Broker:一台kafka服务器就是一个broker。一个集群由多个broker组成。一个broker可以容纳多个topic。
- Offset:消息在partition中的偏移量。每一条消息在partition都有唯一的偏移量,消息者可以指定偏移量来指定要消费的消息。
- Replica:副本,为保证集群中的某个节点发生故障时,该节点上的partition数据不丢失,且kafka仍然能够继续工作,kafka提供了副本机制,一个topic的每个分区都有若干个副本,一个leader和若干个follower。
- leader:每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对象都是leader。
- follower:每个分区多个副本中的“从”,实时从leader中同步数据,保持和leader数据的同步。leader发生故障时,某个follower会成为新的follower。
基础架构
- 为方便扩展,并提高吞吐量,一个topic分为多个partition;
- 配合分区的设计,提出消费者组的概念,组内每个消费者并行消费;
- 为提高可用性,为每个partition增加若干副本,类似NameNode HA;
架构深入
工作流程
Kafka中消息是以topic进行分类的,生产者生产消息,消费者消费消息,都是面向topic的。topic是逻辑上的概念,而partition是物理上的概念,每个partition对应于一个log文件,该log文件中存储的就是producer生产的数据。Producer生产的数据会被不断追加到该log文件末端,且每条数据都有自己的offset。消费者组中的每个消费者,都会实时记录自己消费到了哪个offset,以便出错恢复时,从上次的位置继续消费。(0.9以前:offset存在zookeeper上,0.9以后,保存在Kafka内置topic里。)
文件存储机制
- 一个topic分为多个partition;
- 一个partition分为多个segment;
- 一个segment对应两个文件。
由于生产者生产的消息会不断追加到log文件末尾,为防止log文件过大导致数据定位效率低下,Kafka采取了分片和索引机制,将每个partition分为多个segment。每个segment对应两个文件——“.index”文件和“.log”文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号。例如,first这个topic有三个分区,则其对应的文件夹为first-0,first-1,first-2。
00000000000000000000.index
00000000000000000000.log
00000000000000170410.index
00000000000000170410.log
00000000000000239430.index
00000000000000239430.log
index和log文件以当前segment的第一条消息的offset命名。
下图为index文件和log文件的结构示意图:
“.index”文件存储大量的索引信息,“.log”文件存储大量的数据,索引文件中的元数据指向对应数据文件中message的物理偏移地址。
生产者Producer
分区策略
1)分区的原因
-
方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
-
可以提高并发,因为可以以Partition为单位读写了。
2)分区的原则
需要将producer发送的数据封装成一个ProducerRecord对象。
-
指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
-
没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;
-
既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法。
数据可靠性保证
为保证producer发送的数据,能可靠的发送到指定的topic,topic的每个partition收到producer发送的数据后,都需要向producer发送ack(acknowledgement确认收到),如果producer收到ack,就会进行下一轮的发送,否则重新发送数据。
何时发送ack?
确保有follower与leader同步完成,leader再发送ack,这样才能保证leader挂掉之后,能在follower中选举出新的leader。
副本数据同步策略
多少个follower同步完成之后发送ack?
-
半数以上follower同步完成,即可发送ack?延迟低,选举新的leader时,容忍n台节点的故障,需要2n+1个副本;
-
全部的follower同步完成,才可以发送ack?延迟高,选举新的leader时,容忍n台节点的故障,需要n+1个副本。
kafka选择了第二种方案。
1、同样为了容忍n台节点的故障,第一种方案需要2n+1个副本,而第二种方案只需要n+1个副本,而Kafka的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。
2、虽然第二种方案的网络延迟会比较高,但网络延迟对Kafka的影响较小。
ISR
采用第二种方案之后,设想以下情景:leader收到数据,所有follower都开始同步数据,但有一个follower,因为某种故障,迟迟不能与leader进行同步,那leader就要一直等下去,直到它完成同步,才能发送ack。这个问题怎么解决呢?
Leader维护了一个动态的in-sync replica set (ISR),意为和leader保持同步的follower集合。当ISR中的follower完成数据的同步之后,leader就会给follower发送ack。如果follower长时间未向leader同步数据,则该follower将被踢出ISR,该时间阈值由replica.lag.time.max.ms参数设定。Leader发生故障之后,就会从ISR中选举新的leader。
ack应答机制
对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等ISR中的follower全部接收成功。
Kafka提供了三种可靠性级别,可根据对可靠性和延迟的要求进行权衡。
acks:
- 0:producer不等待broker的ack,这一操作提供了一个最低的延迟,broker一接收到还没有写入磁盘就已经返回,当broker故障时有可能丢失数据;
- 1:producer等待broker的ack,partition的leader落盘成功后返回ack,如果在follower同步成功之前leader故障,那么将会丢失数据;
- -1(all):producer等待broker的ack,partition的leader和follower全部落盘成功后才返回ack。但是如果在follower同步完成后,broker发送ack之前,leader发生故障,那么会造成数据重复。
故障处理
- LEO:每个副本的最后一个offset;
- HW:所有副本中最小的LEO;
- HW之前的数据才对Consumer可见。
(1)follower故障
follower发生故障后会被临时踢出ISR,待该follower恢复后,follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截取掉,从HW开始向leader进行同步。等该follower的LEO大于等于该Partition的HW,即follower追上leader之后,就可以重新加入ISR了。
(2)leader故障
leader发生故障之后,会从ISR中选出一个新的leader,之后,为保证多个副本之间的数据一致性,其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader同步数据。
注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。
Exactly Once语义
对于某些比较重要的消息,我们需要保证exactly once语义,即保证每条消息被发送且仅被发送一次。
在0.11版本之后,Kafka引入了幂等性机制(idempotent)【使用唯一id标记消息,producerId + messageId】,配合acks = -1时的at least once语义,实现了producer到broker的exactly once语义。
idempotent + at least once = exactly once
使用时,只需将enable.idempotence属性设置为true,kafka自动将acks属性设为-1。
消费者Consumer
消费方式
consumer采用pull(拉)模式从broker中读取数据。
push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而pull模式则可以根据consumer的消费能力以适当的速率消费消息。
pull模式不足之处是,如果kafka没有数据,消费者可能会陷入循环中,一直返回空数据。针对这一点,Kafka的消费者在消费数据时会传入一个时长参数timeout,如果当前没有数据可供消费,consumer会等待一段时间之后再返回,这段时长即为timeout。
分区分配策略
一个consumer group中有多个consumer,一个 topic有多个partition,所以必然会涉及到partition的分配问题,即确定那个partition由哪个consumer来消费。
Kafka有两种分配策略,一是roundrobin,一是range。
- roundrobin:轮询,一个分区一个(更好,更均匀,默认);
- range:分段划分。
offset的维护
由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。
Kafka 0.9版本之前,consumer默认将offset保存在Zookeeper中,从0.9版本开始,consumer默认将offset保存在Kafka一个内置的topic中,该topic为__consumer_offsets。
高效读写数据
顺序写磁盘
Kafka的producer生产数据,要写入到log文件中,写的过程是一直追加到文件末端,为顺序写。官网有数据表明,同样的磁盘,顺序写能到到600M/s,而随机写只有100k/s。这与磁盘的机械机构有关,顺序写之所以快,是因为其省去了大量磁头寻址的时间。
零复制技术
- 传统(四次拷贝)
- 零拷贝(一次拷贝)
ZK在Kafka的作用
Kafka集群中有一个broker会被选举为Controller,负责管理集群broker的上下线,所有topic的分区副本分配和leader选举等工作。
Controller的管理工作都是依赖于Zookeeper的。
以下为partition的leader选举过程:
Kafka API
Producer API
消息发送流程
Kafka的Producer发送消息采用的是异步发送的方式。在消息发送的过程中,涉及到了两个线程——main线程和Sender线程,以及一个线程共享变量——RecordAccumulator。main线程将消息发送给RecordAccumulator,Sender线程不断从RecordAccumulator中拉取消息发送到Kafka broker。
相关参数:
-
batch.size:只有数据积累到batch.size之后,sender才会发送数据。
-
linger.ms:如果数据迟迟未达到batch.size,sender等待linger.time之后就会发送数据。
三个器:
- 拦截器
- 序列化器
- 分区器
异步发送API
相关类:
-
KafkaProducer:需要创建一个生产者对象,用来发送数据;
-
ProducerConfig:获取所需的一系列配置参数【bootstrap.servers、key.serializer、value.serializer】;
-
ProducerRecord:每条数据都要封装成一个ProducerRecord对象;
不带回调函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
public class CustomProducer {
public static void main(String[] args) throws ExecutionException, InterruptedException {
Properties props = new Properties();
props.put("bootstrap.servers", "hadoop102:9092"); //kafka集群,broker-list
props.put("acks", "all");
props.put("retries", 1); //重试次数
props.put("batch.size", 16384); //批次大小
props.put("linger.ms", 1); //等待时间
props.put("buffer.memory", 33554432); //RecordAccumulator缓冲区大小
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// 1.创建一个生产者对象
Producer<String, String> producer = new KafkaProducer<>(props);
// 2.调用send方法
for (int i = 0; i < 100; i++) {
producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i)));
}
// 3.关闭生产者
producer.close();
}
}
带回调函数
回调函数会在producer收到ack时调用,为异步调用,该方法有两个参数,分别是RecordMetadata和Exception,如果Exception为null,说明消息发送成功,如果Exception不为null,说明消息发送失败。
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
public class CustomProducer {
public static void main(String[] args) throws ExecutionException, InterruptedException {
Properties props = new Properties();
props.put("bootstrap.servers", "hadoop102:9092"); //kafka集群,broker-list
props.put("acks", "all");
props.put("retries", 1); //重试次数
props.put("batch.size", 16384); //批次大小
props.put("linger.ms", 1); //等待时间
props.put("buffer.memory", 33554432); //RecordAccumulator缓冲区大小
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// 1.创建一个生产者对象
Producer<String, String> producer = new KafkaProducer<>(props);
// 2.调用send方法
for (int i = 0; i < 100; i++) {
producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i)), new Callback() {
// 回调函数,该方法会在Producer收到ack时调用,为异步调用
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception == null) {
System.out.println("success->" + metadata.offset());
} else {
exception.printStackTrace();
}
}
});
}
// 3.关闭生产者
producer.close();
}
}
同步发送API
同步发送的意思就是,一条消息发送之后,会阻塞当前线程,直至返回ack。
由于send方法返回的是一个Future对象,根据Futrue对象的特点,我们也可以实现同步发送的效果,只需在调用Future对象的get方发即可。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public class CustomProducer {
public static void main(String[] args) throws ExecutionException, InterruptedException {
Properties props = new Properties();
props.put("bootstrap.servers", "hadoop102:9092"); //kafka集群,broker-list
props.put("acks", "all");
props.put("retries", 1); //重试次数
props.put("batch.size", 16384); //批次大小
props.put("linger.ms", 1); //等待时间
props.put("buffer.memory", 33554432); //RecordAccumulator缓冲区大小
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// 1.创建一个生产者对象
Producer<String, String> producer = new KafkaProducer<>(props);
// 2.调用send方法
for (int i = 0; i < 100; i++) {
producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i))).get();
}
// 3.关闭生产者
producer.close();
}
}
Consumer API
Consumer消费数据时的可靠性是很容易保证的,因为数据在Kafka中是持久化的,故不用担心数据丢失问题。
由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。
所以offset的维护是Consumer消费数据是必须考虑的问题。
手动提交offset
相关类:
-
KafkaConsumer:需要创建一个消费者对象,用来消费数据;
-
ConsumerConfig:获取所需的一系列配置参数;
-
ConsuemrRecord:每条数据都要封装成一个ConsumerRecord对象;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import java.util.Arrays;
import java.util.Properties;
public class CustomConsumer {
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "hadoop102:9092");
props.put("group.id", "test"); // 消费者组,只要group.id相同,就属于同一个消费者组
props.put("enable.auto.commit", "false"); // 不自动提交offset
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
// 1.创建一个消费者
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
// 2.订阅topic
consumer.subscribe(Arrays.asList("first"));
// 3.调用poll
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
// 4.手动提交offset
consumer.commitSync(); // consumer.commitAsync();
}
}
}
手动提交offset的方法有两种:分别是commitSync(同步提交)和commitAsync(异步提交)。两者的相同点是,都会将本次poll的一批数据最高的偏移量提交;不同点是,commitSync会失败重试,一直到提交成功(如果由于不可恢复原因导致,也会提交失败);而commitAsync则没有失败重试机制,故有可能提交失败。
-
数据重复消费:先消费再提交offset,消费后挂了,offset提交失败,再次消费;
-
数据丢失:先提交offset再消费,提交offset后刮了,数据未消费。
自动提交offset
1
2
props.put("enable.auto.commit", "true"); // 开启自动提交
props.put("auto.commit.interval.ms", "1000"); // 自动提交offset的时间间隔
自定义拦截器
Producer拦截器(interceptor)是在Kafka 0.10版本被引入的,主要用于实现clients端的定制化控制逻辑。
对于producer而言,interceptor使得用户在消息发送前以及producer回调逻辑前有机会对消息做一些定制化需求,比如修改消息等。同时,producer允许用户指定多个interceptor按序作用于同一条消息从而形成一个拦截链(interceptor chain)。Intercetpor的实现接口是org.apache.kafka.clients.producer.ProducerInterceptor,其定义的方法包括:
(1)configure(configs)
获取配置信息和初始化数据时调用。
(2)onSend(ProducerRecord):
该方法封装进KafkaProducer.send方法中,即它运行在用户主线程中。Producer确保在消息被序列化以及计算分区前调用该方法。用户可以在该方法中对消息做任何操作,但最好保证不要修改消息所属的topic和分区,否则会影响目标分区的计算。
(3)onAcknowledgement(RecordMetadata, Exception):
该方法会在消息从RecordAccumulator成功发送到Kafka Broker之后,或者在发送过程中失败时调用。并且通常都是在producer回调逻辑触发之前。onAcknowledgement运行在producer的IO线程中,因此不要在该方法中放入很重的逻辑,否则会拖慢producer的消息发送效率。
(4)close:
关闭interceptor,主要用于执行一些资源清理工作
如前所述,interceptor可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。另外倘若指定了多个interceptor,则producer将按照指定顺序调用它们,并仅仅是捕获每个interceptor可能抛出的异常记录到错误日志中而非在向上传递。这在使用过程中要特别留意。
例子:
实现一个简单的双interceptor组成的拦截链。第一个interceptor会在消息发送前将时间戳信息加到消息value的最前部;第二个interceptor会在消息发送后更新成功发送消息数或失败发送消息数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
// 时间戳拦截器
public class TimeInterceptor implements ProducerInterceptor<String, String> {
@Override
public void configure(Map<String, ?> configs) {}
@Override
public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
// 创建一个新的record,把时间戳写入消息体的最前部
return new ProducerRecord(record.topic(), record.partition(), record.timestamp(), record.key(), System.currentTimeMillis() + "," + record.value().toString());
}
@Override
public void onAcknowledgement(RecordMetadata metadata, Exception exception) {}
@Override
public void close() {}
}
// 统计发送消息成功和发送失败消息数,并在producer关闭时打印这两个计数器
public class CounterInterceptor implements ProducerInterceptor<String, String>{
private int errorCounter = 0;
private int successCounter = 0;
@Override
public void configure(Map<String, ?> configs) {}
@Override
public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
return record;
}
@Override
public void onAcknowledgement(RecordMetadata metadata, Exception exception) {
// 统计成功和失败的次数
if (exception == null) {
successCounter++;
} else {
errorCounter++;
}
}
@Override
public void close() {
System.out.println("Successful sent: " + successCounter);
System.out.println("Failed sent: " + errorCounter);
}
}
// 主程序
public class InterceptorProducer {
public static void main(String[] args) throws Exception {
// 1.设置配置信息
Properties props = new Properties();
props.put("bootstrap.servers", "hadoop102:9092");
props.put("acks", "all");
props.put("retries", 0);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// 2.构建拦截链
List<String> interceptors = new ArrayList<>();
interceptors.add("com.kafka.interceptor.TimeInterceptor");
interceptors.add("com.kafka.interceptor.CounterInterceptor");
props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, interceptors);
String topic = "first";
Producer<String, String> producer = new KafkaProducer<>(props);
// 3.发送消息
for (int i = 0; i < 10; i++) {
ProducerRecord<String, String> record = new ProducerRecord<>(topic, "message" + i);
producer.send(record);
}
// 4.一定要关闭producer,这样才会调用interceptor的close方法
producer.close();
}
}